
Local Gaussian Density Mixtures for Unstructured Lumigraph Rendering
XIUCHAO WU, State Key Lab of CAD&CG, Zhejiang University, China
JIAMIN XU, Hangzhou Dianzi University, China
CHI WANG, State Key Lab of CAD&CG, Zhejiang University, China
YIFAN PENG, The University of Hong Kong, China
QIXING HUANG, University of Texas at Austin, USA
JAMES TOMPKIN, Brown University, USA
WEIWEI XU∗, State Key Lab of CAD&CG, Zhejiang University, China

3DGS Ref-NeRFOursGT

PSNR 29.47 PSNR 28.80 PSNR 27.28

PSNR 30.84 PSNR 26.69 PSNR 26.47

Fig. 1. Image-based rendering is particularly challenging due to complex reflections from curved surfaces and refractions in transparent materials. Compared
to existing methods (3DGS [Kerbl et al. 2023] and Ref-NeRF [Verbin et al. 2022]), our approach more accurately reproduces high-frequency view-dependent
appearance, such as the reflected building on the car hood in Blue Car (top), and the multi-bounce refractions in Glass Bust (bottom).

To improve novel view synthesis of curved-surface reflections and refrac-
tions, we revisit local geometry-guided ray interpolation techniques with
modern differentiable rendering and optimization. In contrast to depth or
mesh geometries, our approach uses a local or per-view density represented
as Gaussian mixtures along each ray. To synthesize novel views, we warp and
fuse local volumes, then alpha-composite using input photograph ray colors
from a small set of neighboring images. For fusion, we use a neural blending
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weight from a shallowMLP.We optimize the local Gaussian density mixtures
using both a reconstruction loss and a consistency loss. The consistency
loss, based on per-ray KL-divergence, encourages more accurate geometry
reconstruction. In scenes with complex reflections captured in our LGDM
dataset, the experimental results show that our method outperforms state-
of-the-art novel view synthesis methods by 12.2%–37.1% in PSNR, due to its
ability to maintain sharper view-dependent appearances. Project webpage:
https://xchaowu.github.io/papers/lgdm/index.html
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1 INTRODUCTION
There is a spectrum of approaches to novel view synthesis, from local
ray interpolation to image-based rendering to global radiance fields.
Local ray interpolation methods, popularized with light fields or
lumigraphs, interpolate novel ray colors from input photographs via
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two-plane ray parameterization [Gortler et al. 1996; Levoy and Han-
rahan 1996]. For accurate scene reproduction, local ray interpolation
methods require capturing the light field with a high spatio-angular
resolution. To reduce this capture burden, unstructured lumigraphs
use geometric proxies to guide the selection of corresponding rays to
interpolate. Such proxies can be global [Buehler et al. 2001; Eisemann
et al. 2008] or per input view [Hedman et al. 2018, 2016]. Rendering
quality is determined by the accuracy of the geometric proxy, which
itself must be reconstructed. Beyond interpolating input colors,
we can also create novel views by reconstructing a global scene
representation of color and geometry, such as a neural radiance
field (NeRFs) [Mildenhall et al. 2020] or a set of 3D Gaussians
(3DGS) [Kerbl et al. 2023]. These representations are optimized
by minimizing the difference between the input photographs and
their reproduction through volumetric rendering.

One challenging visual phenomenon is reflections that appear to
move with camera motion; a second is the related phenomenon of
refractions through transparent objects. Many methods, including
NeRF and 3DGS, often handle reflections by optimizing virtual ge-
ometry to be ‘behind’ surfaces at the total reflected light path length.
For planar reflectors, a global virtual reflection geometry provides a
plausible explanation of the visual phenomenon that is consistent
with all input photographs [Sinha et al. 2012]. However, for curved
reflectors, it is difficult to maintain a consistent virtual geometry,
resulting in blurred reflections (Fig. 1). To better model curved reflec-
tions, methods have adopted additional physical modeling through
surface normal estimation and material decomposition [Verbin et al.
2022; Zhang et al. 2021b]. Such approaches may assume distant
environmental lighting conditions [Verbin et al. 2022] that limit
application to specific real-world scenarios. Factorizing materials
increases the number of free parameters, leading to increased ambi-
guity during optimization [Zhang et al. 2021b]. As a result, dealing
with curved reflective surfaces or transparent objects still poses
challenges and producing sharp reflections is difficult.
Given this difficulty, we revisit ideas from geometry-guided ray

interpolation techniques with modern neural fields, differentiable
rendering, and end-to-end optimization. Interpolation-based meth-
ods can avoid the blurring that occurs in global optimization of view-
dependent appearance like reflections because only a few similar
neighboring photographs are used to produce ray colors. But the
appearance still depends significantly on the proxy geometry, and
we know that consistent recovery of reflector geometry is tricky for
curved reflectors. Rather than a global proxy geometry, we propose
for each input view to define a local proxy geometry. As each local
geometry only has to remain consistent across the small set of
neighboring views used to produce a novel view, this makes it
possible to represent complex curved reflectors in a ‘piecewise’ way,
helping to maintain sharp reflections.

For per-view geometry, we use a density field approximated by a
mixture of ten Gaussians per ray. The Gaussian parameters per ray
are encoded via an MLP into a feature, which is then stored within
a 2D hash grid per photo (Fig. 2). To calculate soft visibility, we
use the Gaussian mixture cumulative distribution function (CDF)
along the ray. During rendering, input photo colors are warped
backwards from a small set of neighboring views, blended using
optimized weights from an MLP, and alpha-composed. This local

representation performs well in modeling curved reflectors, pro-
ducing sharper reflections on objects like cars and glass busts than
Ref-NeRF and 3DGS, and producing as sharp results as the global
front-facing multi-plane geometry method NeX [Wizadwongsa et al.
2021] without being restricted to front-facing scenes.

In summary, our main technical contributions are as follows.
• A per-view Gaussian density mixture representation and image-
based rendering approach that is well-suited to modeling high-
frequency reflections for curved and transparent objects.

• An end-to-end optimization scheme with photometric and con-
sistency losses to encourage coherence across per-view proxies,
and a sparse voxel grid sampling for efficiency.
Compared with other state-of-the-art neural- and image-based

rendering methods, our method can produce sharper results with
high-fidelity view-dependent appearance (Fig. 1).

2 RELATED WORK
Warping Image-based Rendering. Unstructured lumigraph render-

ing [Buehler et al. 2001] warps and interpolates a collection of input
images through a proxy geometry. Many methods rely on global
geometry reconstructed from captured images [Chaurasia et al. 2011;
Goesele et al. 2010; Ortiz-Cayon et al. 2015]. Global geometry can
constitute depth images, visual and opacity hulls for pixel visibility,
and 3D meshes for view-dependent texturing and surface light
fields [Chaurasia et al. 2013; Debevec et al. 1996; Fitzgibbon et al.
2005; Matusik et al. 2000, 2002; Wood et al. 2000]. Later methods use
per-view information to improve rendering quality. For instance,
Chaurasia et al. [2013] use super-pixels as constraints to derive per-
pixel depth, which significantly mitigates image warping artifacts
along occlusion edges. Hedman et al. [2016] reconstruct a global
geometry and refine the depth map for each view to align edges
between the depth channel and the RGB channels. The resulting
per-view meshes effectively handle large occlusions and motion par-
allax. Subsequently, the DeepBlending method [Hedman et al. 2018]
integrates two distinct multi-view stereo (MVS) reconstructions
for per-view depth refinement. To reduce ghosting, a deep neural
network blends images warped with per-view meshes.Wang et al.
[2021] also combine image-based rendering method with neural
networks and propose a generic view interpolation method.While
these methods can reproduce view-dependent effects to some extent,
they struggle with specular effects due to their reliance on a proxy
geometry with only a single surface—this often fails to represent
reflections well without considering reflected rays.

Layered Reflections. We might also try to separate the input im-
ages into separate layers containing reflections [Kopf et al. 2013;
Szeliski et al. 2000]. Sinha et al. [2012] estimate the foreground and
reflected depth to handle planar reflections. Xu et al. [2021] explicitly
reconstructed a two-layer geometry along with diffuse and reflected
images. Rodriguez et al. [2020] estimate curved reflector geometry
for car windows with a two-layer representation—background and
car window—using reflective flows. These methods advance our
ability to model reflections in IBR by introducing a reflection layer.

Layered Geometry. These representations help to handle complex
occlusions and appearance. Layered depth images (LDI) [Shade
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Fig. 2. Our proposed representation. Left : For each view, the local multi-layer geometry is represented as a per-view density field, with each pixel associated
with a ray-based Gaussian mixture parameterized as {𝜇𝑛, 𝜎𝑛, 𝜔𝑛 }. All Gaussian mixtures with their parameters in each view are encoded in a 2D hash grid.
Right : During rendering, for each ray in the target view, we sample a set of points and generate each point’s density 𝛼̃𝑘 and color c̃𝑘 based on backward
warping and occlusion-aware neural weighted blending. Then, the final color of each ray is obtained using alpha composition, which is used in the rendering
loss to end-to-end optimize the parameters of all 2D hash features and the MLPs.

et al. 1998] store scene geometry within a projective volume at
a specific viewpoint. Penner et al. [2017] extend this concept by
constructing projective volumes with additional depth uncertainty
for captured images, leading to higher quality view synthesis at
occlusion edges. Hedman et al. [2017] use two-layer color-and-depth
panoramas to produce perspective views near captured viewpoints
with motion parallax effects. Layered representations can also be
predicted using deep neural networks, such as end-to-end deep
stereo for unstructured view interpolation [Flynn et al. 2016], and
deep view synthesis based on multiplane image (MPI) techniques [Li
and Khademi Kalantari 2020; Mildenhall et al. 2019; Srinivasan
et al. 2019; Wizadwongsa et al. 2021; Xu et al. 2019; Zhou et al.
2018]. LLFF [Mildenhall et al. 2019] and NeX360 [Phongthawee et al.
2022] extend a single MPI to multiple MPIs, where novel views are
rendered by blending adjacent MPIs.

Our method connects to layered representations as we use a fixed
number of Gaussians per ray. This is related to mixture density
distributions in stereo matching [Tosi et al. 2021]. However, unlike
an MPI that shares the same depth sampling for all pixels in each
plane, our method employs individual depth sampling for each ray.

Global scenes. Many methods create a global representation via
reconstruction. Neural radiance fields (NeRF) encode scene density
and appearance compactly within a multi-layer perceptron (MLP)
neural network. This is a volume rendered to produce an image.
Volume rendering has been accelerated through hash grids and
direct voxel storage [Fridovich-Keil et al. 2022; Müller et al. 2022],
scaled through tiling [Wu et al. 2023, 2022], and extended to dynamic
scenes [Pumarola et al. 2021]. Our approach also uses 2D hash grids
to encode the local Gaussian mixtures.

Some neural methods are designed for complex appearance [Ma
et al. 2024; Verbin et al. 2024; Wu et al. 2024]. Ref-NeRF [Verbin et al.
2022] optimizes a spatial MLP to predict diffuse colors and surface
normals and then produces specular reflections via normal-reflected

rays and a directional MLP. Other inverse rendering representations
incorporate surface details, normals, lighting, albedo, and bidirec-
tional reflectance distribution functions (BRDFs) [Hasselgren et al.
2022; Laine et al. 2020; Liu et al. 2019; Munkberg et al. 2022; Yao et al.
2022; Zhang et al. 2021a,b]. These approaches can be susceptible to
over-fitting and are sensitive to initialization and regularization.

Points or primitives have also been studied [Kopanas et al. 2021;
Lassner and Zollhöfer 2021; Yifan et al. 2019]. Kopanas et al. [2022]
separate reflections among a point cloud using a neural warp field.
3D Gaussian splatting (3DGS) [Kerbl et al. 2023] uses anisotropic
Gaussians with color and density as scene primitives, achieving
faster rendering speed compared to NeRF-based approaches.
Our method also uses Gaussians to represent the density. How-

ever, instead of optimizing a global representation of color and
density, we optimize local per-ray density only and use input views
for color rendering. This scheme better renders a high-frequency
view-dependent appearance. Further, since our Gaussian representa-
tion is 1D along each ray, it is challenging to determine the coverage
area to be splatted onto other views, so we ray cast instead of splat.

3 METHOD

3.1 Local Gaussian Density Mixture Representation
Our input is a set of𝑀 input images {𝐼𝑖 }𝑀𝑖=1 ∈ I with corresponding
camera poses {𝑃𝑖 }𝑀𝑖=1. Our objective is to reconstruct a local density
field {D𝑖 }𝑀𝑖=1 that, once rendered using IBR in neighboring views,
will reproduce the input images. We will take a volume rendering ap-
proach. The density distributions in the fields D are parametrically
represented by a Gaussian mixture per ray with 𝑁 = 10 kernels.
Each pixel u in the image 𝐼 corresponds to a ray with direction

d. Given a camera origin o, a point x = o + 𝑡d exists along the ray
at a distance 𝑡 . The volume density at the point 𝛼 (x) = 𝛼 (u, 𝑡) is a
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Fig. 3. Neural blending weight benefit. Top: The dashed pink curve
denotes the range of viewing angles in which a reflection is visible. Given
a target ray (yellow arrow) that falls outside this range, a neighboring ray
with a smaller angle may not capture the similar reflection component.
However, using a fixed blending weight function, this neighboring ray will
still be assigned a larger weight. Bottom: Rendering results using neural
blending weights versus a fixed blending weight function.

weighted sum of Gaussians:

𝛼 (u, 𝑡) =
𝑁∑︁
𝑛=1

𝜔𝑛 (u) 𝑔(𝑡 ; 𝜇𝑛 (u), 𝜎𝑛 (u)), (1)

where each Gaussian 𝑔(·) has an associated mean 𝜇𝑛 (u), standard
deviation 𝜎𝑛 (u), and weight 𝜔𝑛 (u).
The soft visibility 𝑣 or transmittance for each point x can be

calculated analytically from the Gaussian mixture parameterization:

𝑣 (u, 𝑡) = exp
(
−

∫ 𝑡

𝑠

𝛼 (u, 𝛿) 𝑑𝛿
)

= exp

(
−

𝑁∑︁
𝑛=1

𝜔𝑛 (u) (𝐺 (𝑡 ; 𝜇𝑛 (u), 𝜎𝑛 (u)) −𝐺 (𝑠; 𝜇𝑛 (u), 𝜎𝑛 (u)))
)

(2)

where 𝑠 denotes the location of the near plane and 𝐺 (𝑡 ; 𝜇, 𝜎) is the
cumulative distribution function (CDF) of the Gaussian function:

𝐺 (𝑡 ; 𝜇, 𝜎) = 1
2
erf( 𝑡 − 𝜇

𝜎
√
2
) + 1

2
, (3)

where erf(·) is the error function.

3.2 Warping and Fusing Volumes
Next, we introduce a differentiable volume rendering procedure to
create novel views from local Gaussian mixtures. The novel target
view is formed in three steps via a ray sampling approach, using

information from a set of 𝐿 input views that are neighbors to the
target view. First, we reproject local density into the target view’s
frame via backward warping. Then, we merge local densities while
considering occlusion by fusion. Finally, we alpha composite input
colors via a neural blending weight. Note that we will use symbols
without subscripts to refer to properties of the target view.

Backward warping. For each pixel coordinate u in the target
view, we sample a set of world-space points {x𝑘 }𝐾

𝑘=1 along the
ray, transform each into the camera space of each neighboring view
𝑖 , then project the point to pixel coordinates to produce u′

𝑖
. With

this, we can obtain a color c𝑘
𝑖
, density 𝛼𝑘

𝑖
, and visibility 𝑣𝑘

𝑖
:

u′𝑖 = 𝜋 (x
𝑘 ; 𝑃𝑖 ), c𝑘𝑖 = 𝐼𝑖 (u′𝑖 ), (4)

𝛼𝑘𝑖 = 𝛼𝑖 (u′𝑖 , | |x
𝑘 − o𝑖 | |), 𝑣𝑘𝑖 = 𝑣𝑖 (u′𝑖 , | |x

𝑘 − o𝑖 | |), (5)

where 𝜋𝑖 (·) denotes the projection operation from a point in world
space to the pixel space of the 𝑖-th neighboring input view. We
calculate density and visibility using Eq. 1 and 2, respectively.

Fusion. We fuse the warped densities and colors by considering
visibility and using an optimized blending weight. As we expect
density to represent local and view-independent geometry, we
consider only visibility when fusing:

𝛼𝑘 =

∑
𝑖 𝑣
𝑘
𝑖
· 𝛼𝑘
𝑖∑

𝑖 𝑣
𝑘
𝑖

. (6)

Color will still contain view-dependent information even with
local warping. As a result, we fuse the multi-view colors using a
neural blending weight ℎ𝑘

𝑖
:

c̃𝑘 =

∑
𝑖 ℎ
𝑘
𝑖
· 𝑣𝑘
𝑖
· 𝑐𝑘
𝑖∑

𝑖 ℎ
𝑘
𝑖
· 𝑣𝑘
𝑖

. (7)

ℎ𝑘
𝑖
is encoded in a small MLP:

ℎ𝑘𝑖 = Φ(x𝑘 , d𝑘 − d𝑘𝑖 ;𝜃 ), (8)

where d𝑘 and d𝑘
𝑖
indicate the ray direction for the point x𝑘 for the

target and neighboring views, and 𝜃 represents the MLP parameters.
We use the point position and relative ray direction as inputs to
allow view dependence.

In comparison to a fixed blending weight function (ULR [Buehler
et al. 2001], InsideOut [Hedman et al. 2016]), our neural blend-
ing weights are optimized end-to-end and can better capture high
frequency reflection (Fig. 3). Compared to weights predicted by a
pre-trained CNN (DeepBlending [Hedman et al. 2018]), our neural
blending weights use a compact MLP.

Alpha composition. Finally, we accumulate a fused color c̃𝑘 along
the ray by using the fused densities 𝛼𝑘 . This step obtains the ren-
dered color for each pixel:

c̃ =
∑︁
𝑘

(
𝑤𝑘 · c̃𝑘

)
, (9)

𝑤𝑘 = exp(−
𝑘−1∑︁
𝑗=1

𝛼 𝑗 · 𝛿 𝑗 ) · (1 − exp(−𝛼𝑘 · 𝛿𝑘 ), (10)
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Fig. 4. View selection. Left : Selecting views based only on ray-view
similarity can result in certain points not being trained with enough
observations. Rendering artifacts may appear for the surface point invisible
to two of the selected neighboring views. Right : This issue can be fixed
by selecting views based on their projected 2D positions with respect to
the target view, ensuring they are uniformly distributed across all four
quadrants when projected onto the image space of the target view.

where𝑤𝑘 represents the alpha-blending weight for the point x𝑘 in
the target view.

Neighbor view selection. Even with visibility-aware and view-
dependent fusion, picking a set of good neighbor views 𝐿 is critical
to achieving high quality results. This selection is guided by an
accumulated cosine similarity per ray that considers the angle
between the target and neighbor view rays:

S𝑖 =
∑︁
𝑘

S𝑘𝑖 =
∑︁
𝑘

(o − x𝑘 ) · (o𝑖 − x𝑘 )
| |o − x𝑘 | | · | |o𝑖 − x𝑘 | |

. (11)

S𝑘
𝑖
is set to 0 if the projected pixel falls outside the viewport.
Given ray-view similarities {S𝑖 } for all neighboring views, next

we select the 𝐿 views. Naïvely selecting views with the highest
similarity values may select uninformative ‘clumps’ of cameras
(Fig. 4 left). Instead, we stratify selection (Fig. 4 right): We project
the centers of all neighboring cameras onto the image plane of the
target view, which separates neighboring cameras centers into four
quadrants. Then, we rank view similarity within each quadrant
and iteratively select neighboring views with the highest similarity
values from each quadrant in turn. This approach tends to produce
more balanced neighbors. For instance, when observing an occlusion
edge, neighbor cameras in one direction will always fail to see a
point beyond the edge. Our strategy avoids selecting only those
cameras even if they are nearby.

3.3 Optimization
To optimize the local density fields and neural weights, we define a
loss L with two components: an L2 reconstruction loss Lr and a
consistency loss Lc:

L = Lr + 0.01Lc, (12)

Reconstruction loss. To optimize geometry that is local to each
view, we must enforce constraints between views. Hence, during
optimization, each input view is treated as a target view to be re-
constructed. For this, we minimize the difference between rendered

pixel colors c̃ and their matched input photograph pixel colors c:

Lr = | |c̃ − c| |22 . (13)

Consistency loss. Even with a reconstruction loss, the density field
local to an input view may be inconsistent with the fused density
field produced when the input view is treated as a target view. We
add a consistency loss by minimizing the KL divergence between
alpha-blending weights of 𝐾 sampled points along rays:

Lc =
∑︁
𝑘

𝑤̃𝑘 · log( 𝑤̃
𝑘

𝑤𝑘
), (14)

where 𝑤̃𝑘 is the alpha-blending weight obtained from the fused
density field of the target view, and𝑤𝑘 is the alpha-blending weight
derived from the (same) input view’s local density field.

Although it is only a soft constraint, the consistency loss plays an
important role in improving the view consistency of the rendering
results, as adding it achieves more accurate geometry in general
(Fig. 8). We can consider the loss’ effect in two ways: 1) scene areas
that rely on density alignment, like occlusion edges, are encouraged
to be similar; and 2) scene areas that can be reproduced using
a variety of different geometries (say, low-textured regions) are
encouraged to be similar.

4 IMPLEMENTATION DETAILS
Hash grid and network architecture. Storing the Gaussian mixture

mean, standard deviation, and weight parameters requires𝑊 ×𝐻 ×
𝑁 × 3 floats for each𝑊 × 𝐻 image, which may exceed available
GPU memory during optimization. To overcome this, we reduce
memory use by representing the Gaussian parameters compactly.
The approach uses a hash table of features unique to each image,
followed by a shallow MLP shared across all features (Fig. 2) [Müller
et al. 2022]. The hash table features are collectively optimized such
that the Gaussian mixtures can reproduce the scene. This allows
similar ray density distributions to share MLP capacity through the
embedding space while allowing the image-space location of those
distributions to move.

Each 2D hash grid has 16 levels, where the coarsest level resolu-
tion is 16×16 (e.g., in a 640×480 image, each cell covers 40×30 pixels
at the coarsest level due its 16 × 16 subdivision) and the highest
resolution matches that of the input view. The feature size at each
level is two, and the hash table size for each 2D hash grid is 216.
We use three MLPs. The first MLP decodes features from the

hash grid to produce the Gaussian mixture parameters. The second
MLP decodes features from the hash grid to produce colors. Both of
these MLPs have two 64-neuron layers. The third MLP produces the
neural blending weight and comprises two sub-modules. The first
sub-module encodes 3D points into 16-dimension features. These
features are concatenatedwith ray directions and input to the second
sub-module. Both submodules have two 32-neuron layers. Every
MLP is Gaussian activated [Ramasinghe and Lucey 2022] with a
variance of 0.01.

Baking and rendering. To accelerate rendering at the cost of mem-
ory, we can precompute and store the optimized Gaussian mixture
parameters {𝜇𝑛, 𝜎𝑛, 𝜔𝑛} for each view as a 2D grid. This eliminates
the computational overhead of hashing and executing the MLP to
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(a) 360o-circling (b) Half-circling (c) Forward-facing (d) Unstructured

Fig. 5. Four types of camera trajectories in the LGDM dataset.

recover these parameters. For the neural blending weights, the MLP
is small enough to be stored in CUDA shared memory. For rendering,
our method samples 192 points for each ray in the target view and
blends density and colors for each point across 8 neighboring views.

Ray sampling strategy. To maintain balanced gradient scales dur-
ing each optimization iteration, we adopt a strategy of randomly
sampling an equal number of pixels for each view.

Point sampling and occupancy grid. We use an occupancy grid
to speed up volume point sampling. For every sample point, if the
visibility-aware weight𝑤 (Eq. 10) exceeds 0.01, the corresponding
voxel covering this point is occupied. When processing each target
ray, we begin by sampling 64 points in disparity space. Subsequently,
we uniformly sample 128 points only within the occupied voxels.

Further, we adopt a strategy of gradually subdividing our occupied
grid to increase its resolution [Liu et al. 2020; Wu et al. 2023]. This
subdivision is performed every 1,000 iterations. We start with an
initial resolution of 83 and progressively increase it until reaching a
resolution of 5123.

Viewport extension. In certain scenes, some points are only ob-
served from the target view and so will warp outside all neighboring
views. During optimization, since each input view is treated as a
target view, these points do not have information from neighboring
views to correctly minimize the reconstruction loss, resulting in
floating geometries. To address this issue, we extend each input view
by 50 pixels on each side. The 2D hash feature grid is also extended
accordingly. For the extended pixels, as they do not have captured
colors, we reuse the 2D hash grid features to generate color for the
extended pixels, using an additional color-MLP shared for all the
images. The color for the extended pixels is optimized with respect
to the target view. After optimization, the extended feature grids
and the color-MLP are discarded.

Hyperparameters configuration. Throughout all of our experi-
ments, we optimize for 60k iterations, with each batch consisting of
2,048 rays. We use the Adam [Kingma and Ba 2014] optimizer with
a learning rate that decays from 1𝑒−3 to 1𝑒−4. The training time for
each scene is approximately 4-5 hours on a single Nvidia V100 GPU.

5 EXPERIMENTS
Baselines. We compare to NeX [Wizadwongsa et al. 2021] which

uses a single multi-plane image (MPI) with a neural view-dependent
appearance basis; LLFF [Mildenhall et al. 2019] which fuses local
multi-plane image representations; Instant-NGP (INGP) [Müller et al.
2022] which models scenes as global radiance fields; 3DGS [Kerbl
et al. 2023] which uses primitives to describe a radiance field; Ref-
NeRF [Verbin et al. 2022] and NeuralCatacaustics (NPC) [Kopanas
et al. 2022], which are both designed to handle curved reflections.

Table 1. Quantitative comparisons on our new LGDM dataset. Best
results are highlighted as 1st , 2nd and 3rd . The type of camera
trajectory for each captured scene is visualized in Fig. 5.

Scene Metric LLFF NPC NeX Ref-NeRF INGP 3DGS Ours

Blue Car
67 views
Forward-facing

PSNR↑ 25.64 25.14 28.77 29.00 27.11 31.63 32.82
SSIM↑ 0.903 0.913 0.930 0.915 0.907 0.965 0.974
LPIPS↓ 0.111 0.229 0.215 0.323 0.299 0.153 0.068

Red Car
128 views
Half-circling

PSNR↑ 26.42 22.62 N/A 28.11 27.00 28.52 31.88
SSIM↑ 0.905 0.859 N/A 0.894 0.913 0.950 0.964
LPIPS↓ 0.137 0.292 N/A 0.291 0.198 0.141 0.091

Natatorium
144 views
Forward-facing

PSNR↑ 23.98 23.88 25.01 25.82 25.67 27.43 31.22
SSIM↑ 0.851 0.867 0.846 0.862 0.879 0.929 0.960
LPIPS↓ 0.119 0.229 0.287 0.277 0.219 0.136 0.071

Glass Bust
194 views
Half-circling

PSNR↑ 26.28 20.89 N/A 27.92 25.73 29.42 33.48
SSIM↑ 0.883 0.821 N/A 0.894 0.871 0.954 0.971
LPIPS↓ 0.165 0.389 N/A 0.327 0.373 0.125 0.087

Skyscraper
132 views
Forward-facing

PSNR↑ 20.67 20.21 25.89 24.26 21.95 27.83 30.66
SSIM↑ 0.786 0.844 0.880 0.827 0.792 0.942 0.961
LPIPS↓ 0.137 0.253 0.233 0.339 0.332 0.099 0.073

Mall
112 views
Forward-facing

PSNR↑ 24.83 26.12 30.29 28.15 28.07 24.79 32.53
SSIM↑ 0.879 0.922 0.948 0.907 0.916 0.907 0.969
LPIPS↓ 0.100 0.203 0.129 0.240 0.212 0.198 0.073

Bull
233 views
Unstructured

PSNR↑ 25.88 23.02 25.95 25.38 25.25 26.63 28.90
SSIM↑ 0.873 0.832 0.873 0.840 0.862 0.909 0.932
LPIPS↓ 0.186 0.298 0.330 0.408 0.298 0.211 0.148

Sculpture
150 views
360𝑜 -circling

PSNR↑ 21.81 19.33 N/A 24.12 22.69 25.28 27.01
SSIM↑ 0.783 0.750 N/A 0.810 0.801 0.900 0.912
LPIPS↓ 0.263 0.433 N/A 0.419 0.422 0.203 0.189

Mean
PSNR↑ 24.44 22.65 N/A 26.60 25.43 27.69 31.06
SSIM↑ 0.858 0.851 N/A 0.868 0.868 0.932 0.955
LPIPS↓ 0.152 0.290 N/A 0.328 0.294 0.158 0.100

Table 2. Quantitative comparisons on the Shiny dataset.

Method Metric CD Tools Crest Seasoning Food Giants Lab Pasta Mean

NeX
PSNR↑ 31.43 28.16 21.23 28.60 23.68 26.00 30.43 22.07 26.45
SSIM↑ 0.958 0.953 0.757 0.928 0.832 0.898 0.949 0.844 0.890
LPIPS↓ 0.129 0.151 0.162 0.168 0.203 0.147 0.146 0.211 0.165

Ours
PSNR↑ 31.34 27.95 21.40 28.55 24.22 24.12 32.40 21.44 26.43
SSIM↑ 0.981 0.952 0.749 0.926 0.849 0.845 0.981 0.832 0.890
LPIPS↓ 0.083 0.137 0.148 0.169 0.180 0.177 0.080 0.219 0.150

We use the original implementations and hyperparameters provided
by the respective authors.

5.1 Evaluation on LGDM Data
To evaluate reflections on wide motion scenes, we capture a new
dataset ‘LGDM’ with 8 scenes showing prominent or complex re-
flections, including multi-layer planar reflections (Mall), large glass
surfaces (Skyscraper , Natatorium), curved surface reflections (Blue
Car , Red Car , Sculpture), refraction (Glass Bust, Bull). This dataset
is captured with 67–233 images, resized from 4K (3840 × 2160) to
1K resolution for training and evaluation, and the types of camera
trajectory used in the capturing are illustrated in Fig. 5. We select
a subset of the images as hold-out views (12.5%) for evaluation.
The camera poses are computed using COLMAP [Schönberger and
Frahm 2016]. Skyscraper and Sculpture were captured with a DJI
MINI 4 PRO drone, and the remaining scenes were captured with
an iPhone 14 Pro Max.
Quantitatively, our method outperforms all compared methods

(Table 1), increasing PSNR by 2.64 dB on average. Among these re-
sults, NeX [Wizadwongsa et al. 2021] exhibits a significant decrease
in PSNR when confronted with larger motion parallax due to its
reliance on a single MPI. As Sculpture is a 360◦ scene, and the camera
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GT Ours NeXRendered image (Ours)

Fig. 6. Comparisons on Shiny dataset. Compared with NeX [Wizad-
wongsa et al. 2021], our local representation can faithfully reproduce the
highlights and reflections on the stainless steel (top row), as well as the
reflected contents on the CD and the bottle (bottom row).

circles around the Red Car and Glass Bust from 120◦ to 180◦, NeX’s
single MPI is not suitable for these scenarios and so we mark them
as N/A. 3DGS [Kerbl et al. 2023] suffers from a brittle optimization
in challenging scenes. For instance, in Mall, where the content on
the TV is dynamic and the texture and reflections on the floor are
high frequency, we see floating geometries that lead to a large drop
in PSNR (Fig. 11). To enable direct comparison between rendered
and captured views, we intentionally design the camera trajectory
to be close to the captured views via interpolating between selected
keyframe camera poses in this demo for the Red Car scene. A video
comparison (1:16–1:23) shows that our method outperforms SOTA
methods in reproducing fine details such as the reflections on the
polished car surface and the flare on the car window.
While LLFF [Mildenhall et al. 2019] also uses a local representa-

tion and generates visually appealing results, it suffers from minor
‘pixel shifting’ caused by inaccurate geometry. As reflection-specific
methods, Ref-NeRF [Verbin et al. 2022] and NPC [Kopanas et al.
2022] still struggle with large curved reflections, such as the glass
in Natatorium (Fig. 11). These methods also encounter difficulties in
handling transparent objects, as seen in the Glass Bust scene.

5.2 Evaluation on Shiny Dataset
The publicly-available Shiny dataset from NeX [Wizadwongsa et al.
2021]) includes complex reflections fromCDs and refractions through
water bottles. The motion parallax and depth of field in this dataset
are relatively smaller than in our LGDM dataset. Both NeX and
our method produce similar quantitative results (Tab. 2); however,
qualitative results reveal that our method reproduces sharper reflec-
tions with more details (Fig. 6). For example, while the CD scene
show similar PSNR for both methods, our approach reproduces the
linear striped pattern on the CD itself whereas NeX does not. Aver-
age LPIPS decreases from 0.165 to 0.150, suggesting this improved
perceptual quality over NeX [Wizadwongsa et al. 2021].

Table 3. Quantitative comparisons on the Real Forward-Facing
dataset. Best results are highlighted as 1st , 2nd and 3rd . Please refer
to the supplementary material for the metrics on each scene.

Scene Metric LLFF NeRF NeX INGP 3DGS Ours

Mean
PSNR↑ 24.41 26.76 27.26 24.84 24.86 27.18
SSIM↑ 0.863 0.883 0.904 0.855 0.876 0.905
LPIPS↓ 0.211 0.246 0.178 0.262 0.197 0.166

Table 4. Ablation on losses. Without the consistency loss, the PSNR
decreases for both scenes in the RFF dataset and our LGDM dataset.

Metric Fern Flower T-Rex Natatorium Glass Bust

w/o L𝑐

PSNR↑ 24.55 28.53 26.71 31.16 33.18
SSIM↑ 0.853 0.928 0.928 0.960 0.971
LPIPS↓ 0.231 0.141 0.199 0.069 0.084

Ours
PSNR↑ 25.58 29.15 27.86 31.22 33.48
SSIM↑ 0.880 0.934 0.043 0.960 0.971
LPIPS↓ 0.193 0.130 0.165 0.071 0.084

5.3 Evaluation on Real Forward-facing dataset
On the publicly-available real forward-facing (RFF) dataset from
NeRF [Mildenhall et al. 2020], our approach show competitive perfor-
mancewith NeX [Wizadwongsa et al. 2021], where both show higher
average metrics than other methods (Tab. 3). INGP [Müller et al.
2022] converges quickly but struggles to consistently produce details.
3DGS [Kerbl et al. 2023] can generate sharp results for certain scene
areas but exhibits significant artifacts, such as floating geometries.

5.4 Ablations
Consistency loss. We select Fern, Flower, and T-rex from the RFF

dataset, as well asNatatorium andGlass Bust from our LGDMdataset
to evaluate the impact of the consistency loss (Tab. 4). Removing
the consistency loss Lc significantly reduces PSNR. Qualitatively,
removing it results in geometry exhibiting noise and missing details,
leading to noticeable artifacts during rendering (Fig. 8).

Number of Gaussians and selected views. On the Fern data from
the RFF dataset, reducing the number of Gaussians can result in
significant missing geometry (Fig. 9). Similarly, employing fewer
selected views for warping and blending can present challenges
in accurately locating geometric surfaces, potentially leading to
undesirable artifacts such as blurring and ghosting in the final
results. Through experimentation, we show that using 10 Gaussians
and eight selected views for each ray is a reasonable balance between
computational efficiency and reconstruction quality.

Captured image baseline. In ray interpolation-based IBR, the base-
line between captured images is a key factor that influences render-
ing results. We decrease sampling by 1/2, 1/4, and 1/8 of the total
number of training views (Fig. 10 and Tab. 5). As sparsity increases,
fewer input views indeed reduces rendering quality; at 1/8th of the
input views, we see noticeable artifacts in the rendered images.
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Table 5. Ablation on the density of the captured views. 1/2, 1/4, and
1/8 represent the proportion of the full training set. We uniformly sample
views from full set as training views.

Scene Metric Full Set 1/2 1/4 1/8

Glass Bust
PSNR↑ 33.48 31.70 29.25 27.07
SSIM↑ 0.971 0.962 0.940 0.910
LPIPS↓ 0.084 0.101 0.130 0.166

Natatorium
PSNR↑ 31.22 30.33 28.96 27.00
SSIM↑ 0.960 0.952 0.935 0.907
LPIPS↓ 0.071 0.085 0.104 0.140

6 CONCLUSION
We have shown that a per-view Gaussian density mixture with
image-based rendering can be end-to-end optimized to achieve high-
frequency reflections for curved and transparent objects.

Limitations and future work. As an IBR method, our results can
still show some visual ‘snapping’ on curved reflections as the target
viewmoves between different sets of neighbors. In these cases, there
is a visual trade-off vs. global scene methods between such snapping
in our case and blurring in the case of Ref-NeRF and 3DGS.

The approach is not yet constructed for fast rendering as it uses
a volume sampling method. Each 952 × 535 view takes around 270
ms to render on an NVIDIA RTX 3090Ti, which is faster than NeRF
but is slower than 3DGS. One way to increase rendering speed is
to reduce the number of sampled points per ray. A coarse-to-fine
strategy per ray may increase speed without reducing quality.
Our method achieves highest quality with dense scene capture,

especially for complex reflections or refractions. In diffuse areas,
this results in redundant duplication. But, even with the many views
in our LGDM dataset, global scene representations like Ref-NeRF or
3DGS still cannot achieve as high a quality of reflections as ours;
this discrepancy seems pertinent to investigate in future work.

Another direction for future work is to explore why our method
reconstructs view-dependent effects better than other approaches,
particularly methods that construct global geometries. We have
observed that flexible local geometries and direct color blending are
factors in achieving these results. Developing a rigorous evaluation
framework or theory to support these findings would be valuable.
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N=10 L=8 (Ours) N=1 L=8 N=10 L=1

Fig. 7. Renderings with fewer Gaussians and neighboring views. A smaller number of Gaussians (N=1) for each ray will result in missing geometry,
while a smaller number of neighbor views (L=1) makes it hard to handle occlusions.

Rendered image Rendered depth Rendered image Rendered depth

w
/o

 ℒ
!

O
ur

s

Fig. 8. Ablation on consistency loss. As shown in the top row, without the consistency loss, the rendered depth maps exhibit numerous artifacts, resulting
in a loss of geometric details (e.g., the ribs of the T-rex) and incorrect depth estimates (e.g., the curtain behind glass bust). The bottom row shows that our
consistency loss can help to improve the accuracy of local geometry, leading to fewer artifacts in rendering.
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Fig. 9. Ablation on numbers of Gaussians N and neighboring views L. The line charts show that the number of Gaussians and neighbor views in our
setting (N=10, L=8) is enough for producing high-qulity rendering results. Note that the performance slightly degrades when L reaches 12. This is because a
large value of L incorporates more neighboring views; depending on camera sampling, these views may be more distant. As a result, more distant views are
likely to induce larger occlusions and more diverse view-dependent appearance, thus making view synthesis more challenging.
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GT Full set 1/2 1/4 1/8

PSNR: 33.12 PSNR: 31.94 PSNR: 29.62 PSNR: 25.03PSNR: 28.69 PSNR: 26.45 PSNR: 23.47 PSNR: 20.74

Fig. 10. Varying the baseline of captured views. In Natatorium, while quality stays reasonable with half the views, sharpness decreases with one quarter of
the views as the camera baseline increases. At one eighth of the views, artifacts in thin features appear. PSNR metrics are reported for zoom-ins.

GT Ours 3DGS INGP Ref-NeRF NPC LLFFRendered  image (Ours)

Fig. 11. Results on our LGDM dataset. Top to bottom: Red Car , Mall, Skyscraper , Sculpture. Overall, compared with 3DGS [Kerbl et al. 2023], INGP [Müller
et al. 2022], Ref-NeRF [Verbin et al. 2022], NPC [Kopanas et al. 2022] and LLFF [Mildenhall et al. 2019], our method creates more accurate scene reproductions
for reflections. For the Red Car scene, we also provide a video comparison in our accompanying video, alongside the captured video serving as ground truth.
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